翻訳と辞書
Words near each other
・ Gega, Bulgaria
・ Gegania (gens)
・ Gegard Mousasi
・ Gege
・ Gege (Swaziland)
・ Gege (title)
・ Gege Kizubanata
・ Gege Soriola
・ Gegeen Khan
・ GeGeGe no Kitarō
・ GeGeGe no Nyōbō
・ Gegen den Wind
・ Gegen Engeland (Brest newspaper)
・ Gegen Vergessen – Für Demokratie
・ Gegenbauer
Gegenbauer polynomials
・ Gegenees
・ Gegeneophis
・ Gegeneophis carnosus
・ Gegeneophis krishni
・ Gegeneophis madhavai
・ Gegeneophis nadkarnii
・ Gegeneophis primus
・ Gegeneophis seshachari
・ Gegenes
・ Gegenes hottentota
・ Gegenes niso
・ Gegenes nostrodamus
・ Gegenes pumilio
・ Gegenini


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gegenbauer polynomials : ウィキペディア英語版
Gegenbauer polynomials
In mathematics, Gegenbauer polynomials or ultraspherical polynomials ''C''(''x'') are orthogonal polynomials on the interval () with respect to the weight function (1 − ''x''2)''α''–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.
==Characterizations==

Mplwp gegenbauer Cn05a1.svg|Gegenbauer polynomials with ''α''=1
Mplwp gegenbauer Cn05a2.svg|Gegenbauer polynomials with ''α''=2
Mplwp gegenbauer Cn05a3.svg|Gegenbauer polynomials with ''α''=3
Gegenbauer polynomials.gif|Gegenbauer polynomials

A variety of characterizations of the Gegenbauer polynomials are available.
* The polynomials can be defined in terms of their generating function :
::\frac=\sum_^\infty C_n^(x) t^n.
* The polynomials satisfy the recurrence relation :
::
\begin
C_0^\alpha(x) & = 1 \\
C_1^\alpha(x) & = 2 \alpha x \\
C_n^\alpha(x) & = \frac(- (n+2\alpha-2)C_^\alpha(x) ).
\end

* Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation :
::(1-x^)y''-(2\alpha+1)xy'+n(n+2\alpha)y=0.\,
:When ''α'' = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials.
* They are given as Gaussian hypergeometric series in certain cases where the series is in fact finite:
::C_n^(z)=\frac
\,_2F_1\left(-n,2\alpha+n;\alpha+\frac;\frac\right).
:(Abramowitz & Stegun (p. 561 )). Here (2α)''n'' is the rising factorial. Explicitly,
::
C_n^(z)=\sum_^ (-1)^k\frac(2z)^.

* They are special cases of the Jacobi polynomials :
::C_n^(x) = \frac)_}P_n^(x).
:in which (\theta)_n represents the rising factorial of \theta.
:One therefore also has the Rodrigues formula
::C_n^(x) = \frac\frac(1-x^2)^\frac\left().

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gegenbauer polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.